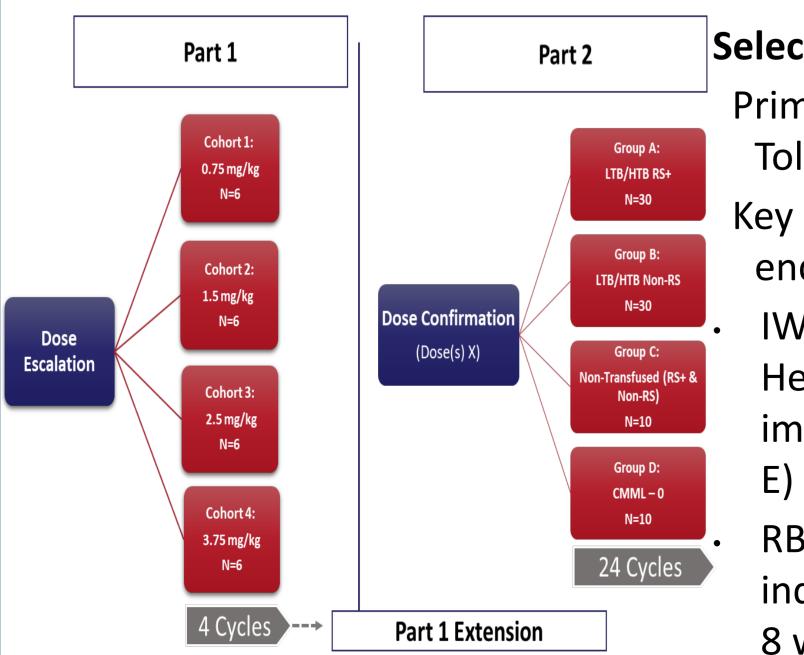


INTRODUCTION

- Dysregulated TGF- β signaling with overactive SMAD2/3 signaling contributes to ineffective hematopoiesis in MDS.¹
- KER-050 is a recombinant fusion protein that is designed to inhibit SMAD2/3 signaling by binding select TGF- β superfamily inhibitory ligands (activin A and B, GDF 8 and 11), to promote maturation and differentiation of earlyand late-stage erythroid and megakaryocyte precursors.²
- In a Phase 1 study, KER-050 elicited rapid and sustained increase in reticulocytes followed by increases in hemoglobin in healthy volunteers. Clinically relevant increases in platelet counts were also observed.³


STUDY DESIGN

Primary objectives:

To evaluate safety and tolerability

Key Eligibility criteria:

- IPSS-R very low to intermediate risk MDS
- Anemia, defined as Hgb <10g/dL or requiring RBC transfusions

Select Endpoints:

Primary: Safety and Tolerability Key Efficacy endpoints: IWG 2006 Hematologic improvement (HI-E) for 8 weeks **RBC** transfusion independence for 8 weeks

A PHASE 2, OPEN-LABEL, ASCENDING DOSE STUDY OF KER-050 FOR THE TREATMENT OF ANEMIA IN PATIENTS WITH VERY LOW, LOW, OR INTERMEDIATE RISK MYELODYSPLASTIC SYNDROMES Ross DM¹, Arbelaez A², Chee L³, Fong CY⁴, Hiwase D⁵, Kannourakis G⁶, Kwan J⁷, Liang J⁸, Puliyayil A⁹, Rose H¹⁰, Tan S¹¹, Teh T-C¹², Westerman D^{13, 14}, Wight J¹³, Rovaldi C¹⁴, Barger R¹⁵, Lachey J¹⁵, Jiang Y¹⁵, Furutani E¹⁵, Natarajan HD¹⁵, Cooper S¹⁵ 1 Flinders Medical Centre, Adelaide, Australia; 2 Tweed Hospital, NSW, Australia; 3 The Royal Melbourne, Australia; 4 Austin Health, Australia; 5 Royal Adelaide Hospital, Adelaide, Australia; 6 Ballarat Oncology & Haematology Services, Australia; 7 Westmead Hospital, Auckland, New Zealand; 9 Albury Wodonga Health, Albury-Wodonga Regional Cancer Centre, Australia; 10 Barwon Health, Australia; 11 St Vincents, Melbourne, Australia; 14 NS Biopharma, Marblehead, MA, USA; 15 Keros Therapeutics, Lexington, MA, USA

Age, m

Male Years s diagno (range

WHO Catego MD MD MD

MD

Transf Burde NT

RS sta Prior I Treatn Iron ch Efficad n (%)* (8-wee

n (%)

Any TEA Treatme related A Grade ≥ Any seri TEAE**

Any TEA requiring modifica Death

BASELINE CHARACTERISTICS

able 1: Demo	graph	ics and	l Base	line C	haracteristi	cs by Cohort	and RS S	it		
		KER-05	0 Dose l	Level (n	ng/kg)		RS St	ta		
	0.75	1.5	2.5	3.75	All	Mean (SD)	RS +			
	(N=6)	(N=6)	(N=6)	(N=6)	(N=24)	EPO (IU/L)	326.0	2		
mean (range)	75.5	68.3	72.0	73.3	72.3 (55 - 88)		(826.2)			
, n (%)	1	5	2	4	12 (50%)	Reticulocytes (10 ⁹ /L)	39.1 (28.0)			
since MDS losis, mean e)	2.7	2.2	0.9	2.7	2.2 (0.2 – 8.6)	Platelets (10 ⁹ /L)	(28.0) 228.4 (67.8)	(
Disease gory, n (%)						TPO (pg/mL)	74.2 (69.3)	2		
DS-MLD	3	3	3	1	10 (42%)	sTfR (mg/L)	1.9 (1.0)	-		
DS-RS-MLD DS-RS-SLD DS with del(5q)	2 0 1 0	2 1 0 0	3 0 0 0	3 0 0 2	10 (42%) 1 (4%) 1 (4%) 2 (8%)	*NT: Non-trans RBC transfusio low-transfusio	ns x 8 weel n burden (1	ks 1-		
fusion en*, B B	3 2 1	0 0 6	1 1 4	1 2 3	5 (21%) 5 (21%) 14 (58%)	RBCs x 8 weeks), HTB: hig transfusion burden (≥4un RBCs x 8 weeks) *2 participants in Cohort 2 (1.5mg/kg) were not effica				
atus (RS +)	3	3	3	4	13 (54%)	evaluable due to withdraw consent (n=1) and death (n 6 participants in Cohort 4 mg/kg) were not efficacy				
ESA ment, n (%)	0	0	2	1	3 (13%)					
chelator, n (%)	0	2	2	2	6 (25%)					
<pre>cy Evaluable **</pre>	6	4**	6	0	16 (67%)	evaluable as had not com 8-weeks on study at the 0 2021, data cutoff date.				
eek endpoints)						,				

SAFETY AND TOLERABILITY

Table 2: Few treatment-related AEs and no dose-dependent AEs

						•			
	K	(ER-050 D	ose Leve	l (mg/kg)					
	0.75 (N=6)	1.5 (N=6)	2.5 (N=6)	3.75 (N=6)	All (N=24)	TEAEs wi	th frequ	uency 2	≥10%
AE	6 (100)	6 (100)	6 (100)	3 (50.0)	21 (87.5)	Diarrhoea –			
ent- AE*	1 (16.7)	0	2 (33.3)	1 (16.7)	4 (16.7)	Dyspnoea – Fatigue –			
≥3 TEAE	1 (16.7)	1 (16.7)	2 (33.3)	1 (16.7)	5 (20.8)	Nausea –			
rious «	1 (16.7)	2 (33.3)	0	2 (33.3)	5 (20.8)	Anaemia – Headache –			
AE ng dose cation	0	0	0	1 (16.7)	1 (4.2)	(10 6 of Pat	
	0	1 (16.7)	0	0	1 (4.2)	CTCAE Toxici	i ty Grade	1 2	-3

I (4.2) *Treatment related AEs with maximum grade: Grade 2 (Rash, Diarrhea, Nausea, Peripheral edema), Grade 1 (Headache, Pain in extremity, Abdominal pain).

**Serious TEAEs with maximum grade: Grade 5 (Death), Grade 3 (Anaemia, Pneumonia, Pneumothorax), Grade 2 (Pyrexia, Cardiac failure congestive). None of the serious TEAEs were deemed related to study drug No treatment-related SAEs observed.

PRELIMINARY RESULTS

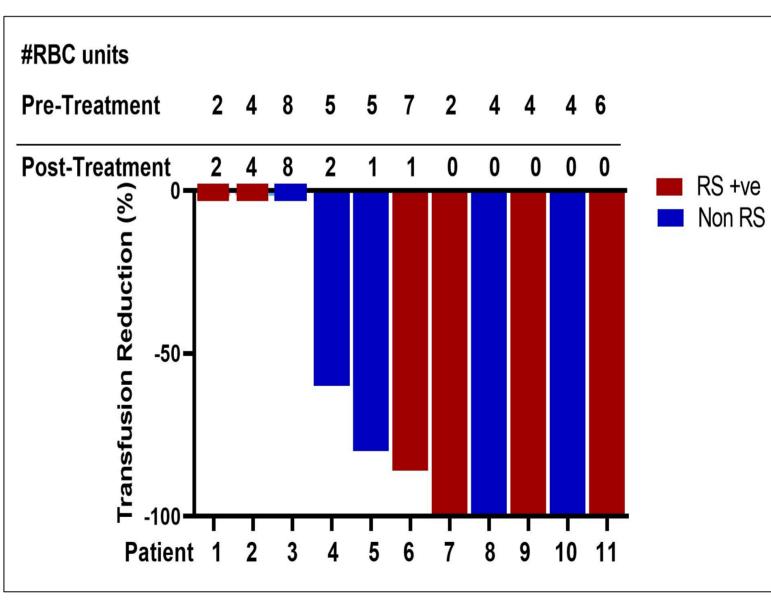
Table 3: Efficacy summary of 8-week endpoints achieved

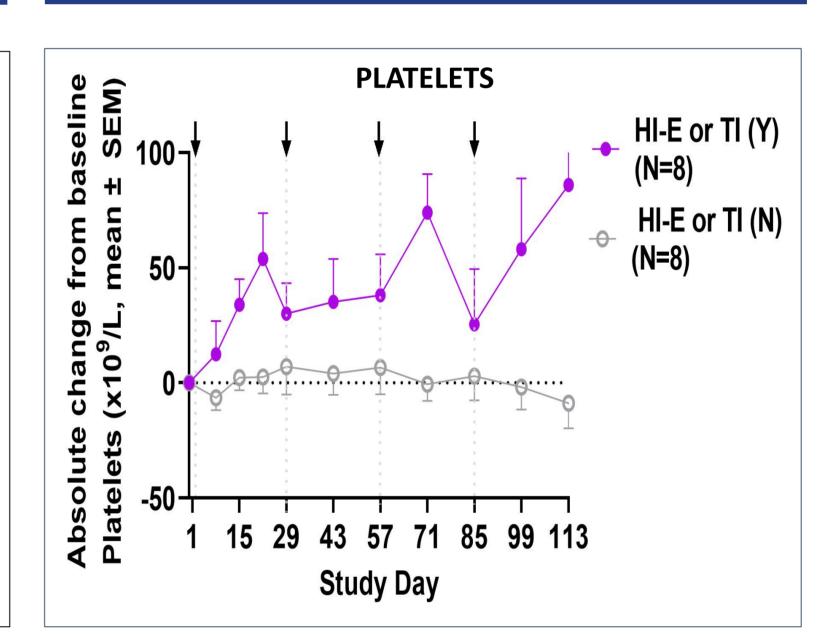
and RS Status				
RS Status				
RS +	Non-RS			
326.0	490.2			
(826.2)	(855.7)			
39.1	29.8			
(28.0)	(24.8)			
228.4	134.6			
(67.8)	(55.5)			
74.2	42.8			
(69.3)	(60.1)			
1.9 (1.0)	1.2 (0.6)			

sfused anemia (no ns x 8 weeks), LTB: n burden (1-3units s), HTB: high rden (≥4units

in Cohort 2 re not efficacyto withdrawal of and death (n=1) and in Cohort 4 (3.75

ad not completed idy at the Oct 25,

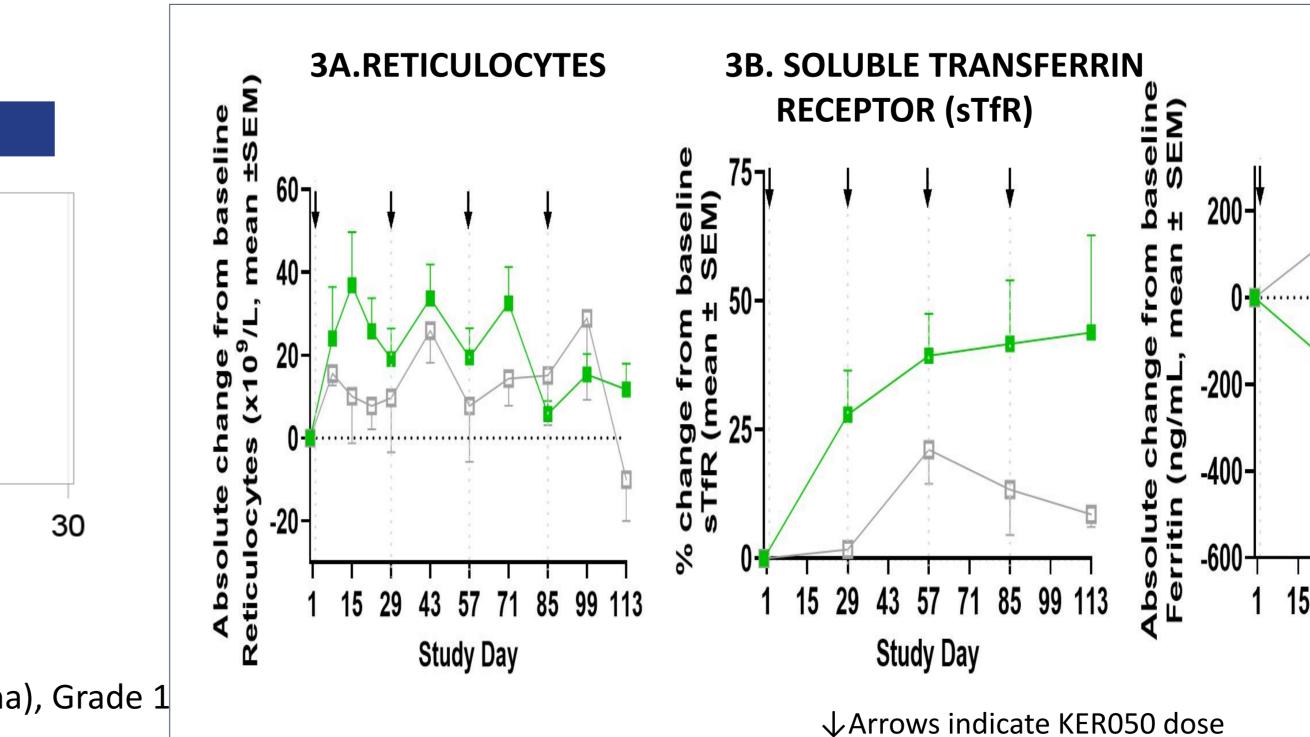

	e of Emeacy sur
Response Summary	Response Rate n/m (%)
Overall Erythroid Response	8/16 (50%) 3 Non-RS, 5 RS+
IWG 2006 HI-E	7/16 (43.8%)
TI*	5/11 (45.5%)


IWG 2006 HI-E:

- $\geq 1.5 \text{ g/dL}$ Hgb x 8 weeks (NT and LTB) Transfusion reduction ≥ 4 RBC units over
- 8 weeks (HTB)

TI: Transfusion-free period 8 weeks *Baseline Transfusion Requirement ≥2 RBC units population as of Oct 25, 2021, data cutoff date

Figure 1: Achievement of HI-E and Transfusion Independence in Non-RS and RS+ MDS Patients with KER-050 Treatment



TI response rate: RS +ve 3/6; Non RS 2/5

No thrombocytosis or thrombotic events observed.

Figure 3: Observed Changes in Hematologic and Ferrokinetic Biomarkers Support Induction of Erythropoiesis With KER-050 Treatment.

Pharmacokinetics: Dose-proportional PK to date

- n = responders in each category; m = 8-week evaluable

Figure 2. Sustained Increases in Platelets Observed in Patients Achieving HI-E or TI Endpoints with KER-050 Treatment

3C. FERRITIN HI-E or TI (Y) (N=8) HI-E or TI (N) 15 29 43 57 71 85 99 113 Study Day

SUMMARY

- KER-050 has been generally welltolerated up to the 3.75mg/kg q4W regimen in this ongoing study
- HI-E (43.8%) and transfusion independence (45.5%) were achieved in both non-RS and RS+ participants
- These data suggest that KER-050 promotes erythropoiesis and thrombopoiesis in patients with MDS •Observed increases in reticulocytes, sTfR and decreases in Ferritin in patients achieving HI-E or TI •Observed increases in platelets observed in patients achieving HI-E or TI
- These data support the continued development of KER-050 as a treatment for ineffective hematopoiesis in MDS

REFERENCES

- Zhou L et al. Blood- 2008; 112-3434
- Ordonez C et al. poster presentation at the 25th European Hematology Association Congress 2020 Abstract# EP806
- LaMora J et al poster #2068 ASH 2021

DISCLOSURES

Ross DM: Honoraria and membership in board of directors/advisory committees for Novartis, paid consultancy, membership on board of directors/ advisory committees and research funding BMS, consultancy and honoraria Keros Arbelaez A:Travel subsidies from Amgen. Chee L: Honoraria and membership in board of directors/advisory committees for Novartis. Fong CY: Paid consultancy for AbbVie, Amgen, Astellas, BMS, Novartis, Pfizer; honoraria: Novotech and Specialized therapeutics. **Wight J**: Honoraria and travel subsidies: AbbVie and Jannsen

Cooper S, Furutani E, Jiang Y, Lachey J, Natarajan **HD** are employees of and security holders in Keros Therapeutics, Inc.

Rovaldi C and **Barger R** are paid consultants and security holders in Keros Therapeutics, Inc. All other authors have reported no disclosures Study is supported by Keros Therapeutics

CONTACT

Investors: Mike Biega, Solebury Trout mbiega@soleburytrout.com +1 (617) 921-9660) Clinicians: Keros clinical team at clinicalstudies@kerostx.com Clinicaltrials.gov NCT 04419649